Suggested Course Plan for a UC Riverside Major in Electrical Engineering

<table>
<thead>
<tr>
<th>Fall Quarter</th>
<th>Units</th>
<th>Winter Quarter</th>
<th>Units</th>
<th>Spring Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 010*</td>
<td>4</td>
<td>CS 013</td>
<td>4</td>
<td>CS 061</td>
<td>4</td>
</tr>
<tr>
<td>C++ Programming I</td>
<td></td>
<td>Introduction to CS for Engineers</td>
<td></td>
<td>Machine Org. & Assembly Lang. Prog.</td>
<td></td>
</tr>
<tr>
<td>EE 010</td>
<td>1</td>
<td>ENGL 001B</td>
<td>4</td>
<td>EE 020</td>
<td>4</td>
</tr>
<tr>
<td>Intro to Electrical Engineering</td>
<td></td>
<td>Intermediate Composition</td>
<td></td>
<td>Linear Method for Engr. Analysis</td>
<td></td>
</tr>
<tr>
<td>ENGL 001A</td>
<td>4</td>
<td>MATH 009B</td>
<td>4</td>
<td>MATH 009C</td>
<td>4</td>
</tr>
<tr>
<td>Beginning Composition</td>
<td></td>
<td>First Year Calculus</td>
<td></td>
<td>First Year Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 009A</td>
<td>4</td>
<td>PHYS 040A</td>
<td>5</td>
<td>PHYS 040B</td>
<td>5</td>
</tr>
<tr>
<td>First Year Calculus</td>
<td></td>
<td>Physics (Mechanics)</td>
<td></td>
<td>Physics (Heat/Waves/Sound)</td>
<td></td>
</tr>
<tr>
<td>SECOND YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 001A & EE 01LA</td>
<td>4</td>
<td>EE 001B</td>
<td>4</td>
<td>CS/EE 120B</td>
<td>5</td>
</tr>
<tr>
<td>Engineering Circuit Analysis I & Lab</td>
<td></td>
<td>Engineering Circuit Analysis II</td>
<td></td>
<td>Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>MATH 046</td>
<td>4</td>
<td>EE/CS 120A</td>
<td>5</td>
<td>EE 116</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations</td>
<td></td>
<td>Logic Design</td>
<td></td>
<td>Engineering Electromagnetics</td>
<td></td>
</tr>
<tr>
<td>PHYS 040C</td>
<td>5</td>
<td>MATH 010A</td>
<td>4</td>
<td>MATH 010B</td>
<td>4</td>
</tr>
<tr>
<td>Physics (Electricity/Magnetism)</td>
<td></td>
<td>Multivariable Calculus</td>
<td></td>
<td>Multivariable Calculus</td>
<td></td>
</tr>
<tr>
<td>CHEM 001A & CHEM 01LA</td>
<td>5</td>
<td>Breadth</td>
<td></td>
<td>Breadth</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry and Lab</td>
<td></td>
<td>Humanities/Social Sciences</td>
<td></td>
<td>Humanities/Social Sciences</td>
<td></td>
</tr>
<tr>
<td>THIRD YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 100A</td>
<td>4</td>
<td>EE 100B</td>
<td>4</td>
<td>EE 114</td>
<td>4</td>
</tr>
<tr>
<td>Electronic Circuits</td>
<td></td>
<td>Electronic Circuits</td>
<td></td>
<td>Prob., Random Variables & Processes</td>
<td></td>
</tr>
<tr>
<td>EE 110A</td>
<td>4</td>
<td>EE 105</td>
<td>4</td>
<td>EE 132</td>
<td>4</td>
</tr>
<tr>
<td>Signals & Systems</td>
<td></td>
<td>Model. & Simulation of Dynamic Sys.</td>
<td></td>
<td>Automatic Control</td>
<td></td>
</tr>
<tr>
<td>Breadth</td>
<td>4</td>
<td>EE 110B</td>
<td>4</td>
<td>Breadth</td>
<td>4</td>
</tr>
<tr>
<td>Humanities/Social Sciences</td>
<td></td>
<td>Signals & Systems</td>
<td></td>
<td>Humanities/Social Sciences</td>
<td></td>
</tr>
<tr>
<td>EE 128 Recommended</td>
<td></td>
<td>BIOL 002, 003 or 005A/05LA</td>
<td></td>
<td>Humanities/Social Sciences</td>
<td></td>
</tr>
<tr>
<td>FOURTH YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 141</td>
<td>4</td>
<td>EE 175B</td>
<td>4</td>
<td>ENGR 180W*</td>
<td>4</td>
</tr>
<tr>
<td>Intro to Communications</td>
<td></td>
<td>Senior Design Project</td>
<td></td>
<td>Technical Communications</td>
<td></td>
</tr>
<tr>
<td>EE 175A</td>
<td>4</td>
<td>Technical Elective**</td>
<td>4</td>
<td>Technical Elective**</td>
<td>4</td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Design Project</td>
<td></td>
<td>Technical Elective**</td>
<td>4</td>
<td>Technical Elective**</td>
<td>4</td>
</tr>
<tr>
<td>Breadth</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities/Social Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* CS 010V may be used to satisfy this requirement

Total Units: 187 Maximum Units: 224

ENGLISH COMPOSITION

A C or better is required in three quarters of English Composition courses to satisfy the graduation requirement. ENGR 180W fulfills the third quarter of English Composition.

BREADTH REQUIREMENTS

For an approved list of Breadth courses:

http://student.engr.ucr.edu/policies/requirements/breadth.html.

Humanities: (3 courses)

A. World History:

B. Fine Arts, Lit., Phil. or Rlst:

C. Human Persp. on Science:

Social Sciences: (3 courses)

A. Econ. or Posc.:

B. Anth., Psyc, or Soc.:

C. General Social Science:

Ethnicity: (1 course)

1. ___________

Upper Division: (2 courses)

1. ___________

2. ___________

**TECHNICAL ELECTIVES **

Please note that Technical Electives may be offered throughout the Academic Year. Consult with your Academic Advisor about potential offerings. See approved technical electives on back.

Course Plan is subject to change.
You must complete 5 courses (at least 20 units) of Technical Elective coursework chosen from the list below. It is recommended that at least 3 courses are chosen from one Focus Area. Courses marked with * are required course for a focus area. Units are listed in ()..

Intelligent Systems (IS)
- *EE 146 Computer Vision (4)
- EE 140 Computer Visualization (4)
- EE 144 Introduction to Robotics (4)
- EE 152 Image Processing (4)
- EE 128 Data Acquis., Instrum., & Process Ctrl (4)
- CS 122A Intermediate Embedded and Real-time Systems (5)
- CS 130 Computer Graphics (4)
- ENGR 160 Intro to Engineering Optimization Techniques (4)

Control and Robotics (CR)
- *EE 151 Introduction to Digital Control (4)
- EE 123 Power Electronics (4)
- EE 128 Data Acquis., Instrum., & Process Ctrl (4)
- EE 144 Introduction to Robotics (4)
- EE/ME 145 Robotic Planning & Kinematics (4)
- EE 146 Computer Vision (4)
- EE 152 Image Processing (4)
- EE 153 Electric Drives (4)
- CS 122A Intermediate Embedded and Real-time Systems (5)
- ENGR 160 Intro to Engineering Optimization Techniques (4)

Nanotechnology, Advanced Materials, and Devices (NMDC)
- *EE 133 Solid-State Electronics (4)
- EE 117 Electromagnetics II (4)
- EE 134 Digital Integrated Circuit Layout and Design (4)
- EE 135 Analog Integrated Circuit Layout and Design (4)
- EE 136 Semiconductor Device Processing (4)
- EE 137 Intro to Semiconductor Optoelectronic Devices (4)
- EE 138 Electronic Properties of Materials (4)
- EE 139 Magnetic Materials (4)
- EE 160 Fiber Optic Communication Systems (4)
- EE 123 Power Electronics (4)
- EE 162 Intro to Nanoelectronics (4)
- EE 165 Design for Reliability of Integrated Circuits and Sys. (4)
- EE/CS 168 Introduction to VLSI Design (5)
- ENGR 160 Intro to Engineering Optimization Techniques (4)

VLSI Design and Systems (VLSI)
- *CS/EE 168 Introduction to VLSI Design (5)
- EE 123 Power Electronics (4)
- EE 128 Data Acquis., Instrum., & Process Ctrl (4)
- EE 133 Solid-State Electronics (4)
- EE 134 Digital Integrated Circuit Layout and Design (4)
- EE 135 Analog Integrated Circuit Layout and Design (4)
- EE 136 Semiconductor Device Processing (4)
- EE 137 Intro to Semiconductor Optoelectronic Devices (4)
- EE 165 Design for Reliability of Integrated Circuits and Sys. (4)
- CS 161 Design and Architecture of Computer Systems (4)
- CS 122A Intermediate Embedded and Real-time Systems (5)
- ENGR 160 Intro to Engineering Optimization Techniques (4)

Communications, Signal Processing and Networking (CSPN)
- *EE 150 Digital Communications (4)
- EE 117 Electromagnetics II (4)
- EE 128 Data Acquis., Instrum., & Process Ctrl (4)
- EE 152 Image Processing (4)
- EE 160 Fiber Optic Communication Systems (4)
- CS/EE 168 Introduction to VLSI Design (5)
- CS 122A Intermediate Embedded and Real-time Systems (5)
- ENGR 160 Intro to Engineering Optimization Techniques (4)

Power Engineering (PE)
- *EE 155 Power System Analysis (4)
- EE 117 Electromagnetics II (4)
- EE 123 Power Electronics (4)
- EE 128 Data Acquis., Instrum., & Process Ctrl (4)
- EE 153 Electric Drives (4)
- ENGR 160 Intro to Engineering Optimization Techniques (4)

*Required course for the Focus Area